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1 Introduction

Recent years have seen a growing interest in developing numerical algorithms for solving

compressible multicomponent flows. The dynamics of inviscid multicomponent fluid may

be modeled by the Euler equations. However, computations often run into unexpected

difficulties due to nonphysical oscillations generated at the vicinity of the material interface,

while such oscillations do not arise in single-fluid computations when a nonlinearly stable

scheme, such as the essentially non-oscillatory (ENO) or weighted ENO (WENO) scheme

[16, 38, 29, 20], is used. The underlying mechanisms have been analyzed and several methods

have been developed to overcome these difficulties, e.g. in [23, 22, 10, 1, 2, 25, 5].

There are mainly two approaches to circumvent these oscillations. One is still based on the

conservative Euler equations, and the other is to write the Euler equations in nonconservative

or primitive form.

The ghost fluid method (GFM) developed in [13] with the isobaric fix technique in [14]

has provided an attractive and flexible way to treat the two-medium flow model for conser-

vative Euler equations. The GFM treats the material interface as an internal boundary, and

by defining ghost cells and ghost fluids, the two-medium flow can be solved via two respec-

tive single-medium GFM Riemann problems. This method is simple and it easily extends

to multi-dimensions, and it can maintain a sharp interface without oscillations. Variants

of the original GFM and their applications can be found in, e.g. [25, 26, 27, 46] and the

references therein. Later, these techniques are used to develop the Runge-Kutta discontinu-

ous Galerkin (RKDG) finite element method for multi-medium flow in [33, 34, 51, 47]. The

GFM, even though approximating directly the conservative Euler equations, is in general

not a conservative method because the flux at the interface is double-valued. Recently, a

conservative modification to the GFM using the fifth order finite difference WENO scheme

with third order Runge-Kutta time discretization has been studied in [28], which attempts

to reduce the conservation error of the GFM without affecting its performance.

The other approach is based on the observation that erroneous pressure fluctuations
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are generated by the conservative equations, hence a better approximation can be obtained

when writing the equations in a nonconservative (primitive) form [21, 22]. In these papers

a scheme for the nonconservative Euler formulation is proposed, with consistent correction

terms to remove the leading order conservation errors. This scheme can completely eliminate

spurious oscillations at the material interface, yielding clean monotonic solution profiles.

This work has been extended to solve two dimensional problems in [35]. In this method,

the correction terms depend heavily on the corresponding conservative numerical scheme,

and only second order nonconservative scheme has been provided and applied to shocks of

weak to moderate strengths, it is less justifiable for high-resolution schemes with narrow

shock transition and it is not justified in cases of strong shocks [18]. It is noted in these

papers that, for nonconservative hyperbolic systems, the shock relationships are not uniquely

defined by the limiting left and right states, but also depend on the viscous path connecting

the two states. The correct shock capturing lies in getting correctly the viscous path.

The theory developed by Dal Maso, LeFloch and Murat [11] gives a rigorous definition of

nonconservative products, associated with the choice of a family of paths. Later, people have

paid much attention to the development of numerical schemes for solving nonconservative

hyperbolic systems, see for example [32, 7, 8, 6] and references therein. A high order Roe-type

scheme based on the reconstructed states has been provided in [7] for the one-dimensional

case, and then extended to two dimensions in [6], but only with applications to shallow-

water systems. Other work based on this high order method has been carried out for solving

two-phase flow models in [45, 12, 42]. A limitation of this approach has been pointed out

recently in [3] when applied to nonconservative Euler equations. The problem is related to

the effective choice of a correct path in the nonconservative high order scheme. It appears

that, for nonconservative Euler equations, using the Roe linearization to choose a path as in

[43, 7, 6] might end up in converging to a weak solution of a different path [3].

In this paper, we focus on adapting high order schemes for solving nonconservative Euler

equations, still based on high order Roe-type finite volume schemes as those in [7, 6]. For
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the nonconservative or primitive Euler equations, the right path should recover the weak

solution of the conservative Euler formulation with density, momentum and energy as its

variables. In smooth regions, the conservative and nonconservative Euler equations are

equivalent, but at discontinuities, they are not [21]. As is well known, shock capturing

schemes such as monotone, total variation diminishing (TVD), or ENO and WENO schemes,

smear discontinuities with one or several transition points. These transition points are

necessary for conservation, however in a nonconservative formulation, they may not land on

the correct path and hence may lead to convergence to erroneous weak solutions on different

paths. Realizing this difficulty, which unfortunately is generic with all shock capturing

schemes, our basic idea in this paper is to use Harten’s subcell resolution technique [15]

to sharpen the discontinuities and effectively eliminate (or at least significantly reduce) the

transition points. As a result, the convergence towards the correct weak solution based on

the originally desired path seems to be restored.

Harten’s subcell resolution idea [15] is based on ENO schemes with a Lax-Wendroff time

discretization procedure in a cell-averaged framework. Later, this idea is extended in [39] to

both finite volume and finite difference ENO schemes with Runge-Kutta time discretization.

Recently, this subcell resolution idea has been used in solving advection equations with stiff

source terms, to obtain correct shock speed on coarse meshes [48]. In this paper, with the

sharp left and right states at the discontinuities, we use the exact Riemann solution to catch

the right path that connects the two states, as the correct capturing of the shock speed is

sensitive to the accuracy of the numerically achieved path.

In Section 2, we first describe the high order Roe scheme for the nonconservative hy-

perbolic system. Then we introduce the two medium flow model for nonconservative Euler

equations in Section 3. In Section 4, we illustrate how to apply the WENO reconstruction

with subcell resolution to the high order Roe scheme. In Section 5, we describe the compu-

tation of the integral term in the high order Roe scheme in detail. In Section 6, we present

the level set function to track the material interface. A summary of our algorithm to aid
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implementation is given in Section 7, and one-dimensional numerical examples are provided

to demonstrate the effectiveness of our approach in Section 8. Concluding remarks follow in

the last section.

2 High order Roe scheme for nonconservative hyper-

bolic systems

In this section, we follow the procedure in [7] to define the high order Roe scheme for

solving nonconservative hyperbolic systems. For the one-dimensional case, a nonconservative

hyperbolic system reads

Wt + A(W )Wx = 0, x ∈ Ω ⊂ R, t > 0 (2.1)

where W = W (x, t) is a N-component state vector and A(W ) is a N×N matrix. The system

is supposed to be hyperbolic, i.e. A(W ) has N real eigenvalues and a full set of N linearly

independent eigenvectors.

We use a uniform grid

a = x 1

2

< x 3

2

< · · · < xNx−
1

2

< xNx+ 1

2

= b.

The cells, cell centers, and the uniform cell size are denoted by

Ii ≡ [xi− 1

2

, xi+ 1

2

], xi ≡
1

2
(xi− 1

2

+ xi+ 1

2

), ∆x ≡ xi+ 1

2

− xi− 1

2

, i = 1, 2, ..., Nx.

In the case of systems of conservation laws, that is when A(W ) = ∂F/∂W , which is the

Jacobian of a flux function F (W ), (2.1) reduces to a classical conservation law

Wt + F (W )x = 0 (2.2)

A conservative finite volume semi-discretization of the system (2.2) is

W ′
i (t) =

1

∆x
(Gi−1/2 − Gi+1/2), (2.3)

with the numerical flux

Gi+1/2 = G(W−

i+1/2(t), W
+
i+1/2(t)), (2.4)
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where Wi(t) is used to approximate the cell averaged value W i(t), which is defined as

W i(t) =
1

∆x

∫ xi+1/2

xi−1/2

W (x, t)dx,

and W±

i+1/2(t) are the reconstructed states associated to the cell average sequence {Wj(t)}.

The semi-discrete high order Roe scheme for (2.3) can be written as

W ′
i (t) = − 1

∆x
(A+

i−1/2(W
+
i−1/2(t) − W−

i−1/2(t))

+A−

i+1/2(W
+
i+1/2(t) − W−

i+1/2(t)) − F (W+
i−1/2(t)) + F (W−

i+1/2(t))) (2.5)

which is equivalent to the conservative scheme (2.3) with the numerical flux (2.4) defined to

be

Gi+1/2 = F (W−

i+1/2(t)) + A−

i+1/2(W
+
i+1/2(t) − W−

i+1/2(t))

= −F (W+
i+1/2(t)) + A+

i+1/2(W
+
i+1/2(t) − W−

i+1/2(t)) (2.6)

=
1

2
((F (W+

i+1/2(t)) + F (W−

i+1/2(t)) − |Ai+1/2|(W+
i+1/2(t) − W−

i+1/2(t))).

Here

|Ai+1/2| = A+
i+1/2 − A−

i+1/2 (2.7)

and the Roe property

A(W+ − W−) = F (W+) − F (W−) (2.8)

has been used. The intermediate matrices are defined by

Ai+1/2 = A(W+
i+1/2(t), W

−

i+1/2(t)) (2.9)

and

A±

i+1/2 = Ri+1/2Λ
±

i+1/2R
−1
i+1/2, Λ±

i+1/2 = diag((λ1)
±

i+1/2, · · · , (λN)±i+1/2) (2.10)

where Ri+1/2 is a N ×N matrix with each column as a right eigenvector of Ai+1/2, and Λi+1/2

is the diagonal matrix whose diagonal entries are the corresponding eigenvalues of Ai+1/2.
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We introduce P t
i (x) as any smooth function defined in the cell Ii, such that

lim
x→x+

i−1/2

P t
i (x) = W+

i−1/2(t), lim
x→x−

i+1/2

P t
i (x) = W−

i+1/2(t). (2.11)

Then, (2.5) can be rewritten as

W ′
i (t) = − 1

∆x
(A+

i−1/2(W
+
i−1/2(t) − W−

i−1/2(t))

+A−

i+1/2(W
+
i+1/2(t) − W−

i+1/2(t)) +

∫ xi+1/2

xi−1/2

d

dx
F (P t

i (x))dx). (2.12)

Now the numerical high order Roe scheme for solving the nonconservative system (2.1)

can be easily generalized from (2.12)

W ′
i (t) = − 1

∆x
(A+

i−1/2(W
+
i−1/2(t) − W−

i−1/2(t))

+A−

i+1/2(W
+
i+1/2(t) − W−

i+1/2(t)) +

∫ xi+1/2

xi−1/2

A(P t
i (x))

d

dx
P t

i (x)dx) (2.13)

with the function P t
i (x) satisfying (2.11). In order to obtain entropy-satisfying solutions, the

Harten-Hyman entropy fix technique [17, 44] can be applied to this scheme.

3 Two-medium flow model for nonconservative Euler

equations

In this section, we describe the two-medium inviscid compressible flow model for the non-

conservative or primitive Euler equations. As pointed out in [21], the choice of the primitive

set of variables, that include density, velocity and pressure, provides a model better suited

for computations of propagating material fronts and results in clean and monotonic solution

profiles, so we consider the one dimensional primitive Euler equations

Wt + A(W )Wx = 0 (3.1)

with

W = (ρ, u, p)T , A(W ) =





u ρ 0
0 u ρ−1

0 γp u



 . (3.2)
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Here ρ is the density, u is the velocity, p is the pressure, γ is the ratio of specific heats. The

total energy is given by E = ρe+ 1
2
ρu2, where e is the specific internal energy per unit mass.

The γ-law equation of state (EOS) used for ideal gases is given as

ρe = p/(γ − 1) (3.3)

and Tait EOS used for the water medium [9, 13, 25, 33] is expressed as

ρe = (p + NwB)/(Nw − 1) (3.4)

where B = B − A, Nw = 7.15, A = 1.0E5 Pa and B = 3.31E8 Pa.

4 WENO reconstruction with subcell resolution

In this section, we will describe how to use the WENO reconstruction with subcell resolu-

tion to reconstruct W±

i+1/2(t) from the cell averages {Wj(t)}. The WENO reconstruction is

described in detail in [20, 37]. We follow the procedure in [39] to describe how to apply the

subcell resolution technique of Harten [15] to the scheme (2.13) with the third order TVD

Runge-Kutta time discretization [38].

We first consider the 1D, scalar, linear version ut +f(u)x = 0, with f(u) = au and a > 0,

to describe the WENO reconstruction with the subcell resolution technique. The extension

to the nonlinear and system cases will follow. We would like to reconstruct u−

i+1/2 and u+
i−1/2

in each cell from the sequence of cell averages {uj}, with the following algorithm.

WENO Reconstruction Algorithm:

Given the cell averages {uj} of a function u(x):

uj =
1

∆x

∫ xj+1/2

xj−1/2

u(ξ)dξ, j = 1, 2, ..., Nx, (4.1)

based on the big stencil Si ≡ {Ii−r, · · · , Ii, · · · , Ii+r}, a k-th (k = 2r + 1) order accurate

approximation to the boundary values u−

i+1/2 and u+
i−1/2 in the cell Ii is reconstructed as

u−

i+1/2 =

r
∑

j=0

ωj(xi+1/2)pj(xi+1/2), u+
i−1/2 =

r
∑

j=0

ωj(xi−1/2)pj(xi−1/2) (4.2)
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where each pj(x) is a reconstruction polynomial that uses the cell averages in the small

stencil Sj
i ≡ {Ii−j , · · · , Ii−j+r} ⊂ Si. The nonlinear weights {ωj(x)}r

j=0 are calculated from

the polynomials {pj(x)}r
j=0 and the linear weights {dj(x)}r

j=0 at each fixed point x, and they

satisfy

ωj(x) > 0,

r
∑

j=0

ωj(x) = 1. (4.3)

The nonlinear weight ωj(x) is close to zero when a discontinuity is located in the stencil Sj
i ,

so as to avoid involving much information from any stencil Sj
i which contains discontinuities.

Remark: For the cell boundaries (4.2), the linear weights dj(xi+1/2) and dj(xi−1/2) are

positive. However, at certain internal points x ∈ Ii (reconstruction at those points are

needed in Section 5), the linear weights dj(x) may be negative. The linear weights may also

become negative if the stencil Si is changed to Si+1 or Si−1, while still reconstructing values

in the cell Ii (e.g. in the following subcell resolution algorithm). In these cases, the technique

to treat negative weights in [36] needs to be applied.

Subcell Resolution Algorithm:

First, at the beginning of every Runge-Kutta cycle:

(I) Define the “critical intervals” (intervals containing discontinuities) Ii = (xi−1/2, xi+1/2)

by σi ≥ σi+1, σi > σi−1, where σi = |m(∆+ui, ∆−ui)|, ∆+ui = ui+1 − ui, ∆−ui = ui − ui−1

and m is the minmod function which is defined to be

m(a1, · · · , an) =

{

s min1≤i≤n |ai|, if s = sign(a1) = · · · = sign(an)

0, otherwise .
(4.4)

(II) For any “critical interval” Ii, let θi = (ui+1 −ui)/(ui+1 −ui−1), and use xi−1/2 + θi∆x

as an approximation to the discontinuity location inside the cell Ii.

Then, in each Runge-Kutta time cycle, we perform:

(III) Let the cell Ii boundary values u−

i+1/2 and u+
i−1/2 be defined as usual, using the

standard WENO reconstruction algorithm (4.2), unless Ii or (for the second and third Runge-
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Kutta stages) Ii−1 is a “critical interval”. If Ii is a “critical interval”, we define

u−

i+1/2 = (1 − ξi)u
(L)
i+1/2 + ξiu

(R)
i+1/2, with ξi = min

(

(1 − θi)∆x

a∆t
, 1

)

(4.5)

u+
i−1/2 = u−,old

i−1/2 (4.6)

where u−,old
i−1/2 is the standard WENO reconstruction with the stencil Si−1, u

(L)
i+1/2 is also the

standard WENO reconstruction with the stencil Si−1, but evaluated at xi+1/2 of the cell Ii,

and u
(R)
i+1/2 is the WENO reconstruction with the stencil Si+1 and evaluated at xi+1/2. Notice

that here for u
(L)
i+1/2 the technique for treating negative weights needs to be used. For the

second and third Runge-Kutta stages, we choose the stencil Si+2 for u
(R)
i+1/2 if ξi < 1 and the

negative weight treating technique needs to be used here as well; and when Ii−1 is a “critical

interval” and ξi−1 < 1, we choose the stencil Si+1 for u−

i+1/2.

Remark:

(a) The case for a < 0 is easily obtained by symmetry.

(b) If two adjacent cells are both “critical intervals”, then we remove the one with a

smaller σi from the list of critical intervals.

(c) For nonlinear systems, the subcell resolution algorithm is simply applied in each local

characteristic field. The detailed procedure can be found in [39]. The only difference in our

current situation is that we just use A(Wi) as the Roe average matrix to do the characteristic

decomposition when defining if Ii is a “critical interval”. However if the material interface is

located in the cell Ii, we always set it to be a “critical interval”, and we use A
(

Wi+Wi+1

2

)

to

do the characteristic decomposition for the right cell boundary at xi+1/2, and A
(

Wi−1+Wi

2

)

for the left cell boundary at xi−1/2. The Roe average to define the intermediate matrix in

(2.9) is Ai+1/2 = A

(

W+

i+1/2
+W−

i+1/2

2

)

.

(d) It is pointed out in [15, 39] that the subcell resolution technique should be applied

only to sharpen contact discontinuities. Special caution is needed when one tries to sharpen

a (nonlinear) shock, to avoid obtaining a nonphysical, entropy condition violating solution.

In our approach, the subcell resolution is used to get sharp left and right states at the
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discontinuities. At a nonlinear shock, this is also needed so as to get a more accurate shock

speed which heavily depends on the left and right states. In the computation for Euler

equations of compressible gas dynamics, we apply the subcell resolution algorithm in both the

linearly degenerate field and genuinely nonlinear fields [44], but for the genuinely nonlinear

fields, with eigenvalues λL and λR corresponding to the left and right states respectively,

we only apply the subcell resolution for the case λL ≥ λR to avoid sharpening a rarefaction

wave.

5 Choice of the path and evaluation of the path inte-

gral

In smooth regions, all simple wave models for conservative Euler equations and primitive

Euler equations are equivalent. However, near discontinuities, they are not equivalent [21].

According to this, our choice of the path is divided into three parts: the smooth case,

discontinuities in a single medium, and discontinuities at the material interface.

5.1 The smooth case

In the smooth case, the integral term in (2.13)

∫ xi+1/2

xi−1/2

A(P t
i (x))

d

dx
P t

i (x)dx (5.1)

can be computed via a high order accurate Gauss-Lobatto quadrature rule. Given the

positions {sj} and associated weights {ωj} for a G-point quadrature in the interval [−1
2
, 1

2
],

we can replace the analytical path integral (5.1) by

∫ xi+1/2

xi−1/2

A(P t
i (x))

d

dx
P t

i (x)dx =

G
∑

j=1

ωjA(P t
i (sj))

d

dx
P t

i (sj). (5.2)

In our numerical experiments, we use the four-point Gauss-Lobatto quadrature rule:

s1,4 = ∓1

2
, s2,3 = ∓

√
5

10
, ω1,4 =

1

6
, ω2,3 =

5

6
. (5.3)
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For P t
i (s1,4), from (2.11) we already have

P t
i (s1) = W+

i−1/2, P t
i (s4) = W−

i+1/2 (5.4)

following the same procedure for obtaining P t
i (s1,4), we can also obtain P t

i (s2,3), where P t
i (s2)

is obtained in the same way as P t
i (s1) corresponding to the local characteristic field at xi−1/2,

and P t
i (s3) as P t

i (s4) corresponding to the local characteristic field at xi+1/2. Note here for

the smooth case, we do not need the subcell resolution in the WENO reconstruction. Since

we have {P t
i (sj)}4

j=1,
d
dx

P t
i (x) can be approximated by Q(x), the derivative of the Lagrangian

interpolation polynomial based on {P t
i (sj)}4

j=1. Then d
dx

P t
i (sj) can be replaced by Q(sj) in

(5.2).

5.2 Discontinuities in a single medium

At the discontinuities, the cell is defined as a “critical interval”, and we have obtained the left

and right states W+
i−1/2 and W−

i+1/2 from the WENO reconstruction with subcell resolution

in Section 4. Denote the left and right states W+
i−1/2 and W−

i+1/2 to be WL and WR, we can

use the exact Riemann solver [40, 44] to obtain the exact Riemann solution between the

two states. The exact Riemann solution for the compressible Euler equations contains four

constant states connected by a rarefaction wave or shock wave, a contact discontinuity, and

another rarefaction wave or shock wave. The four constant states can be denoted as WL,

W∗L, W∗R and WR. In this case of the “critical interval”, we use the exact Riemann solution

to get the integral path for the integral term (5.1). It can be computed as the following

seven parts:

(a) The four constant-state parts, since d
dx

P t
i (x) = 0, the integral in these four parts are

all zero.

(b) If WL and W∗L are connected by a rarefaction wave, we similarly use the 4-point

Gauss-Lobatto quadrature rule (5.3), and P t
i (x) in this part is just the rarefaction wave line.

Otherwise, if WL and W∗L are connected by a shock wave, then the integral path for this part

needs to satisfy the Rankine-Hugoniot jump condition of the conservative Euler equations,

12



and the integral result is σ(W∗L − WL), with σ being the shock speed related to the two

states WL and W∗L. Similar results can be obtained for the connection between W∗R and

WR.

(c) For the contact discontinuity part between W∗L and W∗R, the integral path also

needs to satisfy the Rankine-Hugoniot jump condition. Since W∗L and W∗R have the same

pressure p and velocity u and different densities ρ∗L and ρ∗R, the integral result is simply

(u(ρ∗R − ρ∗L), 0, 0)T .

Remark: In (b) and (c) above, for the shock wave and contact discontinuity, we do not

need to know the exact integral paths for satisfying the Rankine-Hugoniot jump condition,

in order to get the integral results along those paths. We only need to make sure that these

paths exist, which can be easily verified.

5.3 Discontinuities at the material interface

We always set the cell at the material interface as a “critical interval”. The integral term

(5.1) can be computed similar to the second case of discontinuities in a single medium, as

the exact Riemann solution at the material interface is almost the same as that for the single

component compressible Euler equations, also containing four constant states connected by

a rarefaction wave or a shock wave, a contact discontinuity, and another rarefaction wave

or shock wave [25, 27, 24]. Apart from W∗L and W∗R which are connected by a contact

discontinuity, the left part is for medium one with the ratio of specific heats γ1 and the right

part is for medium two with the ratio of specific heats γ2.

6 Tracking the moving medium interface

In this section, we describe how to use the level set equation [41, 4, 31] to track the moving

fluid interface. The level set equation for the one-dimensional case is

φt + uφx = 0. (6.1)
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The interface is tracked as the zero level set of φ, with the initialized φ(x) to be the signed

normal distance to the material front. We use a fifth order finite difference WENO method

[20, 37] with the third order TVD Runge-Kutta time discretization [38] to solve the level

set equation (6.1). This equation is solved concurrently with the nonconservative Euler

equations (3.1), using the velocity u coming from the Euler equations. The solution φ = φ0

from solving the level set equation (6.1) has the zero level set as the material interface, but

it needs not be the distance function for t > 0. A serious distorted level set function φ = φ0

may lead to significant errors for t > 0. For this reason, φ0(x) is reinitialized to be a signed

normal distance function to the interface by solving the following eikonal equation to steady

state

φτ = S(φ0)(1 − |φx|) (6.2)

through iterating the pseudo-time τ , where S(φ) = φ√
φ2+(∆x)2

is the approximate sign func-

tion. We use the Godunov Hamiltonian and the fifth order finite difference WENO discretiza-

tion in [19, 50] to solve (6.2). The stopping criterion for this iteration is e1 < ∆τ(∆x)2, where

e1 is the L1 difference of φ between two consecutive iteration steps, and we take ∆τ = ∆x/10

in the experiments [41].

7 Algorithm summary

Our basic semi-discrete scheme is (2.13), which can be written as

Wt = L(W ).

It is discretized in time by the third order TVD Runge-Kutta method [38]:

W (1) = W n + ∆tL(W n),

W (2) =
3

4
W n +

1

4
W (1) +

1

4
∆tL(W (1)), (7.1)

W n+1 =
1

3
W n +

2

3
W (2) +

2

3
∆tL(W (2)).

Notice that this Runge-Kutta method is simply a convex combination of three Euler forwards.

We can now summarize our algorithm to advance one Euler forward time step (still denoted
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as from tn to tn+1) in the following steps.

Step 1. Compute the new time step size based on the CFL condition:

∆t = CFL ∆x/ max
1≤j≤Nx

(|un
j | + cn

j ) (7.2)

where cn
j =

√

γpn
j /ρn

j is the sound speed, and ρn
j , un

j , p
n
j are the density, velocity and pressure

at time level tn, respectively. This step needs to be done only at the beginning of the whole

Runge-Kutta cycle.

Step 2. Taking W n and φn as the initial condition, solve

Wt = L(W ), (7.3)

φt = P (φ). (7.4)

for one time step using the Runge-Kutta time discretization (7.1). Here (7.4) is written from

(6.1) with the fifth order finite difference WENO spatial discretization. At each Runge-

Kutta time cycle, we first reconstruct W+
i−1/2 and W−

i+1/2 as described in Section 4, then,

based on W+
i−1/2 and W−

i+1/2, we compute the integral term (5.1) as described in Section 5.

We can then formulate the right side of (7.3). P (φ) can be formulated simultaneously, given

the velocity u = un from the Euler equations. Denote the updated W by W n+1, and the

updated φ by φn+1/2.

Step 3. Reinitialize φn+1/2 by solving (6.2) with φ0 = φn+1/2, and denote this solution by

φn+1.

Step 4. Define the new interface position from the zero level set of φn+1. Now we have

advanced one Euler forward time step.

8 Numerical experiments

In the following, we show several one-dimensional numerical examples to demonstrate that

our approach can improve the performance of the high order Roe scheme for the noncon-

servative Euler equations. With fifth order WENO reconstruction in Section 4 (r = 2) and
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four-point Gauss-Lobatto quadrature rule in Section 5.1, the Roe scheme can achieve fifth

order accuracy for smooth solutions, which will be tested in Example 1. Except for Example

1, Example 3 and Example 5, the computational domain for all other examples are taken

as [0, 1], and the initial material interface for the two-medium flow problems is located at

x = 0.5. The CFL number is taken as 0.1. The computational domain is divided with

Nx = 100 uniform grids. Units for density, velocity, pressure, length and time are kg/m3,

m/s, Pa, m and s, respectively.

8.1 Example 1

In this example, we first test the accuracy for a smooth solution to a single component

nonconservative Euler equations with initial conditions

ρ0(x) = 1 + 0.8 sin(x), u0(x) = 1, p0(x) = 1 (8.1)

on a domain [0, 2π] with periodic boundary conditions. The exact solution is

ρ(x) = 1 + 0.8 sin(x − t), u(x) = 1, p(x) = 1.

Since the solution to this problem is smooth, we do not need to apply the subcell resolution.

With fifth order WENO reconstruction in Section 4 (r = 2) and four-point Gauss-Lobatto

quadrature rule for the integral term in the smooth case in Section 5.1, the fifth order

accuracy can be achieved for this path-conservative scheme applied to the single component

nonconservative Euler equations, as listed in Table 8.1.

Table 8.1: Accuracy test for Example 1 with initial data (8.1), t=1.

Nx L
1 error order L

∞ error order

20 2.02E-04 – 3.74E-04 –

40 5.96E-06 5.08 1.28E-05 4.87

80 1.81E-07 5.04 3.93E-07 5.03

160 5.58E-09 5.02 1.19E-08 5.05

320 1.76E-10 4.99 3.53E-10 5.07
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8.2 Example 2

In this example, we now show a single medium flow problem, which is the standard Lax

shock tube problem, to demonstrate that we obtain the correct entropy solution by our

non-conservative scheme. Here γ = 1.4 is used, with the initial condition:

(ρ, u, p) =

{

(0.445, 0.698, 3.528) for x ≤ 0.5;

(0.5, 0, 0.571) for x > 0.5.
(8.2)

The computed density ρ, velocity u and pressure p are plotted at t = 0.17 against the exact

solution in Fig. 8.1. We can see that the rarefaction wave, contact discontinuity and shock

wave are all captured well.

8.3 Example 3

This example is a right moving shock for a single medium flow. Here γ = 5/3 is used, with

the initial condition:

(ρ, u, p) =

{

(41
14

, 9
√

3
41

, 10) for x ≤ 0.5;

(1, 0, 1) for x > 0.5.
(8.3)

We compute this problem on a domain [0, 1]. A similar example (in Lagrangian form) is

used in [3] to demonstrate potential problems of nonconservative path-based Roe-type and

Lax-Friedrichs (LxF)-type schemes. The computed density ρ, velocity u and pressure p are

plotted at t = 0.1 against the exact solution in Fig. 8.2. We can see that our algorithm can

capture the correct shock location in this case, and the minor glitches on the left constant

state would not grow with a much refined mesh (figures on the right).

We also use this simple example to illustrate that in our approach, the subcell resolution

and the exact Riemann solution are both necessary in order to catch the right path in this

non-conservative scheme. In Fig. 8.3, we list the results for two cases: one is obtained when

we use the exact Riemann solution but without subcell resolution, the other is obtained

when we use subcell resolution but with the line path [43, 3] instead of the exact Riemann

solution, on a very refined mesh Nx = 1000. We can see that neither of them can catch the

correct shock solution.
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Figure 8.1: Density, velocity and pressure for Example 2. t = 0.17. Solid line: the exact
solution. Symbol: the numerical solution.
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Figure 8.2: Density, velocity and pressure for Example 3. t = 0.1. Solid line: the exact
solution. Symbol: the numerical solution. Left: mesh Nx = 100; Right: mesh Nx = 1000.
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Figure 8.3: Density, velocity and pressure for Example 3. t = 0.1. Nx = 1000. Solid line:
the exact solution. Symbol: the numerical solution. Left: exact Riemann solution without
subcell resolution; Right: subcell resolution and with the line path instead of the exact
Riemann solution.
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8.4 Example 4

This is an air-helium shock tube problem taken from [13, 33, 28], with the initial condition:

(ρ, u, p, γ) =

{

(1, 0, 1 × 105, 1.4) for x ≤ 0.5;

(0.125, 0, 1× 104, 1.2) for x > 0.5.
(8.4)

The computed density ρ, velocity u and pressure p are plotted at t = 0.0007 against the

exact solution in Fig. 8.4. We can see that the rarefaction wave, the contact discontinuity

and the shock wave are all captured well for this two-medium flow.

8.5 Example 5

This example is used to demonstrate the advantage of high order methods as in [47] for

two medium flows. It contains both shocks and fine structures in smooth regions, which is

a simple model for shock-turbulence interactions. The initial discontinuity is right on the

material interface and located at x = −4, the left and right states for the initial discontinuity

are

(ρ, u, p, γ) =

{

(3.857143, 2.629369, 10.333333, 1.4) for x < −4,

(1 + 0.2 sin(5x), 0, 1, 5/3) for x > −4.
(8.5)

We compute the example up to time t = 1.8 on a domain [−5, 5]. For comparison, we also

show the results obtained with a second order method, by replacing the fifth order WENO

reconstruction with subcell resolution in Section 4 with a second order ENO reconstruction

[15, 39], and replacing the four-point Gauss-Lobatto quadrature rule for the smooth integral

term in Section 5.1 with a trapezoid rule. We plot the densities obtained by the second

order and the fifth order methods with Nx = 200 in Fig. 8.5. The solid line is the solution

obtained by the fifth order method with Nx = 2000 points, which can be considered as

a converged reference solution. We can find that the two methods can both capture the

correct solution, however the result of the fifth order method is in better agreement with

the converged reference solution than the second order method, especially in the region with

fine structures, on this relatively coarse mesh. This is is similar to the results in [47].
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Figure 8.4: Density, velocity and pressure for Example 4. t = 0.0007. Solid line: the exact
solution. Symbol: the numerical solution.
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Figure 8.5: Density, velocity and pressure for Example 5. t = 1. Solid line: the converged
reference solution for the fifth order method with Nx = 2000. Symbol: the numerical solution
with Nx = 200. Left: second order method; Right: fifth order method.

8.6 Example 6

This is a problem of a shock wave refracting at an air-helium interface with a reflected weak

rarefaction wave taken from [13, 33, 28], with the initial condition:

(ρ, u, p, γ) =











(1.3333, 0.3535
√

105, 1.5 × 105, 1.4) for x ≤ 0.05,

(1, 0, 1 × 105, 1.4) for 0.05 < x ≤ 0.5,

(0.1379, 0, 1× 105, 5/3) for x > 0.5.

(8.6)

The computed density ρ, velocity u and pressure p are plotted at t = 0.0012 against the

exact solution in Fig. 8.6. The strength of the shock for this example is pL/pR = 1.5,

the computed results compare well with the exact solutions, without oscillation around the

material interface for the density.

8.7 Example 7

This example is the same as Example 6, also taken from [13, 33, 28] only by increasing the

strength of the right shock wave to pL/pR = 15, with the initial condition as:

(ρ, u, p, γ) =











(4.3333, 3.2817
√

105, 1.5 × 106, 1.4) for x ≤ 0.05,

(1, 0, 1 × 105, 1.4) for 0.05 < x ≤ 0.5,

(0.1379, 0, 1× 105, 5/3) for x > 0.5.

(8.7)

The computed density ρ, velocity u and pressure p are plotted at t = 0.0005 against the

exact solution in Fig. 8.7. The computed results still compare reasonably well to the exact
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Figure 8.6: Density, velocity and pressure for Example 6. t = 0.0012. Solid line: the exact
solution. Symbol: the numerical solution.
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solutions, and there is still no oscillation around the material interface for the density with

this stronger strength of the shock. The small glitches on the left constant state can also

be observed for the methods in [13, 33, 28], which were explained in [13] to be due to the

(mis)capturing of the perfect shock initial data by a shock capturing scheme. In this example,

it is more pronounced since the shock wave is much stronger compared to Example 6.

8.8 Example 8

This is a problem of a shock wave refracting at an air-helium interface, but with a reflected

shock wave [13, 33], with the initial condition as:

(ρ, u, p, γ) =











(1.3333, 0.3535
√

105, 1.5 × 105, 1.4) for x ≤ 0.05,

(1, 0, 1 × 105, 1.4) for 0.05 < x ≤ 0.5,

(3.1538, 0, 1× 105, 1.249) for x > 0.5.

(8.8)

The computed density ρ, velocity u and pressure p are plotted at t = 0.0017 against the

exact solution in Fig. 8.8. The computed results show that there are slight oscillations near

the left shock region, similar results can also be observed in [13] using the standard scheme

from [30]. If we increase the strength of the shock to pL/pR = 15, the code would blow

up. It appears that our subcell resolution procedure is still not accurate enough to capture

the strong generated shock during the instant when the original shock wave impacts on the

material interface.

8.9 Example 9

This is a gas-water shock tube problem with very high pressure in the gaseous medium taken

from [33, 28]. The initial condition is given as

(ρ, u, p, γ) =

{

(1270, 0, 8 × 108, 1.4) for x ≤ 0.5;

(1000, 0, 1 × 105, 7.15) for x > 0.5.
(8.9)

The computed density ρ, velocity u and pressure p are plotted at t = 0.00016 against the

exact solution in Fig. 8.9. Even though the initial pressure in the gas is extremely high and

a very strong shock is generated in the water, our computed results still compare well to the

exact solutions.
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Figure 8.7: Density, velocity and pressure for Example 7. t = 0.0005. Solid line: the exact
solution. Symbol: the numerical solution.
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Figure 8.8: Density, velocity and pressure for Example 8. t = 0.0017. Solid line: the exact
solution. Symbol: the numerical solution.
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Figure 8.9: Density, velocity and pressure for Example 9. t = 0.00016. Solid line: the exact
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8.10 Example 10

This example increases the energy of the explosive gaseous medium in Example 9, which

is taken from [13, 33, 28], originally studied in [49] for the underwater explosions, with the

initial condition given as

(ρ, u, p, γ) =

{

(1630, 0, 7.81× 109, 1.4) for x ≤ 0.5;

(1000, 0, 1 × 105, 7.15) for x > 0.5.
(8.10)

The computed density ρ, velocity u and pressure p are plotted at t = 0.0001 against the

exact solution in Fig. 8.10. We begin to see some discrepancies between the exact solution

and the numerical solution, however the errors are still reasonably small considering that we

are using a nonconservative scheme on this example with very strong discontinuities. The

methods in [13, 33, 28] can solve this problem well.

9 Concluding remarks

In this paper, we have investigated using the WENO reconstruction with a subcell resolution

technique when applied to high order Roe-type schemes for nonconservative Euler equations.

The subcell resolution to sharpen discontinuities, in order to remove or significantly reduce

transition points at discontinuities, has been shown to significantly improve the capturing

of the correct discontinuity waves by defining the correct path in the path integral at dis-

continuities. While this paper identifies the smearing of discontinuities by shock capturing

schemes with transition points at the discontinuities, which do not necessarily land on the

desired paths, as the most probable reason for the failure of schemes to converge to the

correct weak solution on the desired paths, the proposed subcell resolution technique within

a Runge-Kutta time discretization seems to have robustness problems for very strong dis-

continuities, especially during interactions of such discontinuities. An improvement on the

robustness of the algorithms when transition points are removed or significantly reduced

constitutes our future work.

Our discussion is restricted to the one-dimensional case. Preliminary study on the ex-

29



x

D
en

si
ty

0 0.2 0.4 0.6 0.8 1

1000

1200

1400

1600

x

V
el

oc
ity

0 0.2 0.4 0.6 0.8 1
-200

0

200

400

600

800

1000

1200

x

P
re

ss
ur

e

0 0.2 0.4 0.6 0.8 1

0

2E+09

4E+09

6E+09

8E+09

Figure 8.10: Density, velocity and pressure for Example 10. t = 0.0001. Solid line: the exact
solution. Symbol: the numerical solution.
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tension of our methodology to two-dimensional problems (not reported in this paper), im-

plemented in a dimension by dimension fashion (not dimension splitting), has indicated

limitations for some of the complex discontinuity wave patterns. This may be due to the

complication of two-dimensional waves and the limitation of the subcell resolution technique

to capture accurately the correct states and the corresponding paths at the discontinuities.

Further investigation of effective multi-dimensional algorithm in this context also constitutes

our future work.
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